The first edition of Berton Coffin's book on the sounds of singing appeared over thirty years ago, followed by a second edition about ten years later. Coffin's work was deeply rooted in the linear source-filter theory of vowels, which in his day was the workhorse of speech science. His primary colleague in voice science was Pierre Delattre, a phonetician-acoustician who made major contributions to vowel theory as it was evolving in Europe, Japan, and the United States in the second half of the twentieth century.

The pedagogic element in Coffin's work was the "favorable vowel chart," later published in color as the "chromatic vowel chart for voice building and tone placing." Based on the then accepted linear source-filter theory of vowels, the chart shows which vowels most likely resonate the fundamental frequency and harmonics of any note in the vocal range. The chart is comprehensive and complete, but somewhat antiquated now because the most interesting pitch-vowel interaction phenomena are based on a nonlinear source-filter theory. Thus, the old chart is in the coffin, but the Coffin idea needs to be resurrected. This little essay is the beginning of such a resurrection, with, one hopes, many additional installments to come.

The main difference between the current nonlinear source-filter interaction theory and the older linear theory is that formants need to be avoided, not sought out, in the choice of a vowel. It is still true that formants (the resonances of the vocal tract) can boost the energy of any harmonic of the source, but this selective "boosting" often creates irregularity in the vibration pattern of the vocal folds. Unlike in a woodwind or brass instrument, where the horn is long and steady in its geometry, the vocal tract in humans is relatively short and constantly changing due to articulation of phonemes. This does not permit an orderly line-up of source harmonics with vocal tract formants. Hence, it is better to keep the harmonics away from the formants. Furthermore, nonlinear source-filter theory predicts a preference in placing harmonics on the left side of a formant (below the formant frequency) as opposed to the right side (above the formant frequency). Fortunately, there is more than one formant, so vowels can be chosen such that a "leap over the formant" can be made by a harmonic so that it lands on the upslope of an adjacent formant. Thus, chasing "favorable vowels," as Coffin called them, on an ascending pitch scale is like walking up a tall mountain that has multiple peaks and valleys along the way. You stay on the upslopes and try to leap over the valleys as quickly and effectively as possible. The difficulty is that if "you" are the harmonic, all your family members (the other harmonics) have to do the
same thing in lock-step. You walk in a row, separated by a constant distance, but the peaks and valleys are not equally apart.

Figure 1 shows the process. Ten vowels are represented as nearly horizontal lines. The double letter vowel labels have the following phonetic interpretation: uu = /u/, oo = /o/, uh = /U/, aw = /a/, aa = /a/, ae = /æ/, eh = /e/, ih = /I/, ee = /e/, and ii = /i/. The numbers on the vertical axis are an arbitrary scale for vowel separation. The peaks and valleys in the curves represent the changes in vocal tract inertance. Vocal tract inertance has been shown to enhance vocal fold vibration. The greater the inertance, the more enhancement there will be for a harmonic of the source. As seen in the figure, inertance changes rapidly only near the formants. For the ii = /i/ vowel, for example, the first formant is near C₄; for the ih = /I/ vowel, the first formant is near C₅; for the ae = /æ/ vowel, the first formant is between C₅ and C₆ (note the pitch labels C₂, C₃, C₄, C₅, and C₆ on horizontal axes). For any selected pitch, there will be a series of harmonics created at the source. The first four harmonics are shown as vertical lines in Figure 1 for a pitch C₄. Note the location of these harmonics in the peak and valley terrain of the vowels. Stable and acoustically strong productions result when each of these harmonics (F₀, 2F₀, 3F₀, and 4F₀, as labeled on top) resides in high inertance territory, which is to the left of a formant. Whenever a dominant harmonic lands in the formant region, where inertance rises and falls quickly, vocal fold vibration can be destabilized, or the sound output changes suddenly from strong to weak (or vice versa). For the C₄ pitch chosen in our illustration, F₀ is in trouble with the vowel ii = /i/, 2F₀ is in trouble with the vowel ih = /I/, and 3F₀ is in trouble with the vowels aa = /a/ and ae = /æ/. As the pitch changes, of course, different vowels present problems for the harmonics. Thus, the singer modifies the
vowels to maintain consistency of harmonic energy throughout the pitch range.

How is this different from what Coffin taught? In principle, there is no difference. There are good vowels and bad vowels for a given pitch. In practice, however, the new theory is less restrictive because harmonics and formants do not need to be fine-tuned to each other. It is only important to "lift" a harmonic over an inertance valley by modifying the vowel. The new theory also makes a strong connection between vowel modification and voice registers (sometimes called lifts), a topic that will be addressed in later essays. The current message is simply that Coffin is not in the coffin, but resurrected via a new vowel chart. The final (immortal) version of this chart is yet to be revealed.

NOTES


Ingo R. Titze is Distinguished Professor of Speech Science and Voice at the University of Iowa and Executive Director of the National Center for Voice and Speech at the Denver Center for the Performing Arts. His formal education is in physics and electrical engineering, but he has devoted much of his studies to vocal music and speech. Dr. Titze has published more than 500 articles in scientific and educational journals, coedited two books titled Vocal Fold Physiology, and has authored two books called Principles of Voice Production, and The Myoelastic Aerodynamic Theory of Phonation. He has lectured throughout the world and has appeared on such educational television series as Innovation, Quantum, and Beyond 2000. He is a recipient of the William and Harriett Gould Award for laryngeal physiology, the Jacob Javits Neuroscience Investigation Award, the Claude Pepper Award, the Quintana Award, and the American Laryngological Association Award. He is a Fellow of the Acoustical Society of America and the American Speech-Language-Hearing Association. Dr. Titze has served on a number of national advisory boards and scientific review groups, including the Scientific Advisory Board of the Voice Foundation and the Division of Research Grants of the National Institutes of Health. In addition to his scientific endeavors, Dr. Titze continues to be active as a singer. He is married to Kathy Titze and has four children. Mail should be addressed to Ingo R. Titze, National Center for Voice and Speech, 330 WJSHC, Iowa City, IA 52242. Telephone (319) 335-6600.

NATIONAL ASSOCIATION OF TEACHERS OF SINGING

Membership:
Membership in the National Association of Teachers of Singing is open to any citizen of any country whose professional training and experience qualifying him or her as a teacher of singing.

Associate Membership is available for voice teachers and advanced students who have not as yet completed the requirements for full membership.

Affiliate Membership is open to persons or groups that are interested in vocal pursuits but are not actually involved in the teaching of singing, such as speech therapists, laryngologists, schools, publishers, and music stores.

Publications:
Membership includes a subscription to the Journal of Singing, the official journal of NATS, and to Inter Nos, the NATS Newsletter.

Information:
Application for Membership forms may be secured from the Executive Director, NATS, 9957 Moorings Drive, #401, Jacksonville, FL 32257. These forms contain more detailed information about the qualifications for membership and the Code of Ethics of the National Association of Teachers and Singing.